Investigation of

FEMALE REPRODUCTIVE HORMONE DYSFUNCTIONS
Precocious and delayed puberty
Secondary amenorrhea
Hirsutism
Other pathologies: primary amenorrhea and hyperprolactinemia
Menopause

The approach used for each of the subjects discussed in this booklet is identical:

• brief physiological description
• clinical approach
• basic biological profile
• interpretation of results
• secondary examinations, if required
• treatment

Dynamic tests and a list of the main hormone assays are given at the end of the booklet.
Early Follicular Phase (D-3 to D5)
- Selective follicular recruitment

Late Follicular Phase
- FSH/LH > 1
- Pre-ovulatory phase
- Androgens: 4-Androstenedione, Testosterone, ...
- PGE, PGF₂, IGF-I, Inhibin B
- Inhibin B
- Estradiol (E₂) ≤ 40 pg/ml

Luteal Phase
- LH receptor
- Corpus luteum
- Aromatase
- Progesterone
- 37°C

Steroidogenesis
- LH-dependent / Aromatization: FSH-dependent

Hormonal Physiology
- LH: Luteinizing Hormone
- FSH: Follicle-Stimulating Hormone
- GnRH: Gonadotropin Releasing Hormone
- IGF: Insulin-like Growth Factor
- PGE, PGF: Prostaglandins

Hormone Secretions
- Estradiol
- Progesterone

Temperature Curve
- Follicular phase
- Peri-ovulatory phase
- Luteal phase
Onset of puberty before the age of 8 (European population).

CLINICAL SIGNS
Breast development and/or growth of pubic and axillary hair.

INITIAL PROFILE
This profile aims to differentiate between:

- isolated pubic and axillary hair growth (pubarche)
- isolated breast development (thelarche)
- central precocious puberty
- primary precocious puberty (pseudoprecocious puberty)

It comprises:

- basic FSH and LH levels + LH-RH test (GnRH)
- Estradiol
- DHEAS to evaluate adrenal maturation or adrenarche
- evaluation of stature and bone age

INTERPRETATION OF RESULTS

<table>
<thead>
<tr>
<th>secondary sexual characteristics</th>
<th>Isolated or predominant breast development</th>
<th>Predominant or isolated axillary hair growth</th>
<th>More or less balanced development</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic FSH-LH levels</td>
<td>FSH low</td>
<td>LH normal or low</td>
<td>normal or increased</td>
</tr>
<tr>
<td>response to LH-RH test</td>
<td>FSH prepubertal or low</td>
<td>LH prepubertal</td>
<td>pubertal</td>
</tr>
<tr>
<td></td>
<td>PREOCIOUS THELARCHE</td>
<td>isor rental or isolated axillary hair</td>
<td>More or less balanced development</td>
</tr>
<tr>
<td></td>
<td>OVARIAN PRIMARY PREOCIOUS PUBERTY</td>
<td>OVARIAN PRIMARY PREOCIOUS PUBERTY</td>
<td>TRUE PREOCIOUS PUBERTY (OR CENTRAL)</td>
</tr>
<tr>
<td></td>
<td>CENTRAL NEUROGENIC OR IDIOPATHIC PREOCIOUS PUBERTY</td>
<td>CENTRAL NEUROGENIC OR IDIOPATHIC PREOCIOUS PUBERTY</td>
<td>TREATMENT</td>
</tr>
</tbody>
</table>

- In cases of true central precocious puberty, pubertal development is halted using an LH-RH agonist (an annual LH-RH test controls the degree of pituitary blockage).
- Treatment of congenital adrenal hyperplasia (CAH).
- Treatment of the tumor, if required.

Complete pubertal development takes 2 to 3 years. It is preceded by an adrenal maturation phase (at the age of 6 or 7) known as the adrenarche, biochemically characterized by an increase in circulating DHEAS*.

Dehydroepiandrosterone sulfate.
CLINICAL SIGNS

No signs of puberty after the age of 13 - 14 (European population).

INITIAL PROFILE

No breast development, nor pubic and axillary hair growth.

This profile aims to differentiate between:

- delayed puberty
- hypogonadotropic hypogonadism
- hypergonadotropic hypogonadism

INTERPRETATION OF RESULTS

<table>
<thead>
<tr>
<th>Secondary sexual characteristics</th>
<th>No breast development</th>
<th>No pubic and axillary hair growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic FSH-LH levels</td>
<td>Normal or low</td>
<td>Low</td>
</tr>
<tr>
<td>Response to LH-RH test</td>
<td>Prepubertal</td>
<td>Low even nil</td>
</tr>
<tr>
<td></td>
<td>Pubertal or increased</td>
<td>response</td>
</tr>
</tbody>
</table>

- **Delayed Puberty 1 in every 5 cases**
- **Hypogonadotropic Hypogonadism**
- **Hypergonadotropic Hypogonadism**

Secondary examinations for confirmation or orientation

- Cerebral radio-imaging techniques
- GH, TSH, Cortisol, 4-Androstenedione
- Panhypopituitarism (congenital or acquired)
- Isolated gonadotropic insufficiency
- Panhypopituitarism (congenital or acquired)
- Isolated gonadotropic insufficiency
- Specific genetic disorder (e.g. Testicular Feminization Syndrome)
- Miscellaneous causes:
 - Visceral or general (e.g. chronic renal failure)
 - Endocrinopathy (e.g. hypothyroid, hypercortisolism)
 - Psychological or social (e.g. anorexia)
- Panhypopituitarism (congenital or acquired)
- Isolated gonadotropic insufficiency
- Turner’s syndrome

TREATMENT

Substitutive (estrogen then estrogen-progestrone), except in cases of delayed puberty.
CLINICAL SIGNS
- No specific clinical signs
- No menses for over 3 months

Anamnesis:
Date of last childbirth, variation in weight, drugs, genital and breast examination, stop estrogen-progesterone treatment, affective shock...

Background history of:
- Chemotherapy and radiotherapy.
- Surgery (ectopic pregnancy, ovariectomy, appendectomy...).
- Infection (salpingitis, STD, tuberculosis)

INITIAL PROFILE

Firstly:
➢ Assay hCG to exclude pregnancy
 - If hCG negative, make an appointment in 1 to 2 weeks time using a menothermal curve (to exclude pregnancy or trophoblastic tumor)

Then:
➢ FSH, Estradiol, (LH)
➢ Prolactin (PRL)
➢ TSH if apathy and/or weight gain.

Hypothyroidism (increased TSH) leads to an increase in TRH which stimulates PRL secretion.

INTERPRETATION OF RESULTS

<table>
<thead>
<tr>
<th>hCG: negative</th>
<th>TSH: normal or regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRL</td>
<td>FSH</td>
</tr>
<tr>
<td>increased</td>
<td>normal</td>
</tr>
<tr>
<td>E₂ ≥40 pg/ml</td>
<td>normal or low</td>
</tr>
<tr>
<td>initial profile if after halting treatment:</td>
<td>Progesterone test</td>
</tr>
<tr>
<td>PRL</td>
<td>- Early ovarian insufficiency?</td>
</tr>
<tr>
<td>• Iatrogenous origin</td>
<td>• Adenoma (radio-imaging techniques of the sella turcica and visual field)</td>
</tr>
<tr>
<td>• Estradiol to evaluate ovocytic maturation</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>(bleeding)</td>
<td>(no bleeding)</td>
</tr>
</tbody>
</table>

Etiologies
- Infection
- Endometrium lesion (following curettage)
- Physical / Psychological trauma (central amenorrhea)
- Sport at competitive level
- Adenoma / adrenal tumor or secreting ovary?
- E₂, Cortisol, Testo
- Recent non-secreting pituitary adenoma
- Hemorrhagic childbirth (Sheehan’s syndrome)

Depending on etiology
- Hysteroscopy
- Laparoscopy
- Endometrium, cervix biopsy
- Pelvic radio-imaging techniques
- Scan, NMR

Basic tests

Secondary examinations for confirmation and orientation

Additional investigations and/or action to be taken:
Either desire for pregnancy:
- FSH, LH, E₂
- Ovulation induction

Or wait:
- For menses to return
- FSH and LH control
- Cyclic progesterone treatment, if required
Clinical Signs

- Hirsutism: excess hair growth in regions stimulated by sexual hormones. Possible to grade (0 to 4) the level of excess hair. Hirsutism is pathological while hypertrichosis is ethnic and family-related.
- Acne, seborrhea
- Possible obesity (android fat distribution?)
- Recent signs of virilization (voice deepening, clitoromegaly...)

Initial Profile (before D5 if spaniomenorrhea)

This profile aims to distinguish:

- The origin of hyperandrogenemia (ovarian, adrenal or idiopathic).

Cases of recent virilization may also be of tumor origin, for which biological diagnosis must be rapid.

Interpretation of Results

<table>
<thead>
<tr>
<th>Test</th>
<th>N</th>
<th>N or</th>
<th>N or >1</th>
<th>non informative</th>
<th>N or >1</th>
<th>non informative</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>LH</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>LH/FSH ratio</td>
<td>>2</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>4-Androstenedione</td>
<td>N or</td>
<td>N or >1</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>Testosterone</td>
<td>N or</td>
<td>N or >1</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>DHEAS</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>PRL</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>E2</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N</td>
<td>non informative</td>
</tr>
<tr>
<td>17-OH-P</td>
<td>N</td>
<td>N</td>
<td>N or >1</td>
<td>non informative</td>
<td>N or >1</td>
<td>non informative</td>
</tr>
</tbody>
</table>

Dynamic tests

- LH-RH test: LH normal
- ACTH test: N 17-OH-P > 5 mg/ml at T0 + 60 mins

Radio-imaging techniques

- Ovarian cysts: Normal ovaries
- Adrenal volume

PCO

- Polycystic ovarian syndrome
- Biopathic hirsutism, hyperproduction and hyperconsumption of androgens, 5α-reductase-receptor disease
- Late appearance of adrenal hyperplasia (21-hydroxylase deficiency)
- Specific investigation of adrenocortical hyperfunction (Cushing's syndrome)

Virilizing ovarian tumor

N = reference value
Primary Amenorrhea

Secondary sexual characteristics are most often absent (impuberty)

- external genital organs (pubic hair, vulva, clitoris) not or only slightly developed
- internal genital organs (vagina, uterus, hymen, ovaries) normal or more or less absent

Initial profile

FSH, LH, E₂

Interpretation of Results

Basic tests

<table>
<thead>
<tr>
<th>FSH↑↑, LH↑↑, E₂↑↑</th>
<th>FSH, LH = N or E₂ low</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYPERGONADOTROPIC HYPOGONADISM</td>
<td>HYPOGONADOTROPIC HYPOGONADISM</td>
</tr>
</tbody>
</table>

Secondary examinations for confirmation or orientation

- sex chromatin (jugal mucous)
- karyotype

- 46XY
- 46X0
- Turner’s syndrome
- 17-α-hydroxylase deficiency
- Savvy-James syndrome
- Testicular Feminizing syndrome
- Savoy-James syndrome
- Testicular Feminizing syndrome

FSH↑ or N

LH↑

Text type
- Minimum breast development
- Abdominal or inguinal testicles
- androgen insensitivity (no DHT-receptors)

- 46XX
- 46XX
- Kallman’s syndrome
- Prader-Willi’s syndrome
- Functional: congenital disease, chronic disease (IRC…), anorexia
- hypothalamic origin
- hypothalamic origin

- LH-RH test
- pituitary origin
- infiltration disease, sarcoidosis, histiocytosis
- Tumors: cranial-pharyngioma, glioma, adenoma

Other pathologies

- Turner’s syndrome
- 46X0
- 90% of cases

Clinical signs

Initial profile

Interpretation of results
OTHER PATHOLOGIES

PHYSIOLOGICAL ROLE - REGULATION

Prolactin (= lactotropic hormone) is a peptide hormone

Role: triggering and maintaining lactation

Secretion by the pituitary according to a circadian rhythm

(max.: between 2 am and 6 am; min.: 10 am and 12 pm)

Regulation:
- inhibition of secretion by hypothalamic Dopamin
- stimulation of secretion by TRH (see dynamic tests page 21)
- other factors increase secretion: stress, thyroid hormones, corticoids, estrogens, physical exercise, meals and some therapeutic drugs (see below).

INITIAL PROFILE

Precautions when assaying Prolactin:

- rest (no stress)
- detailed questioning: dates of last menses, intensive sport, treatment in progress...

Indicative reference values:

- men and children: < 15 ng/ml
- menstruating women: < 5 ng/ml
- menopausal women: < 20 ng/ml
- pregnant women: progressive increase until childbirth

INTERPRETATION OF RESULTS

Hypoprolactinemia

There is no hyposecretion threshold; low levels have no clinical significance.

Hyperprolactinemia

In cases of primary hyperprolactinemia, treatment using Dopamin agonist and / or surgery.

Therapeutic drugs causing hyperprolactinemia (examples)

- Psychotropic drugs
- Antidepressant drugs
- Estrogens
- Metoclopramide
- Opium-based drugs
- Cimetidine
- Romitidine

TREATMENT

In cases of primary hyperprolactinemia, treatment using Dopamin agonist and / or surgery.

Therapeutic drugs causing hyperprolactinemia (examples)

- Psychotropic drugs
- Antidepressant drugs
- Estrogens
- Metoclopramide
- Opium-based drugs
- Cimetidine
- Romitidine
Clinical Signs

Perimenopause: physiological situation as of 45 - 50 yrs of age, with irregular or shorter cycles: follicular phase increasingly shorter (FSH, E₂), then luteal insufficiency with P₄ and LH which stimulates E₂.

Accompanying clinical signs: mastodynia, abdominal and pelvic distension, weight gain, irritability, hot flushes.

Confirmed menopause: estrogen levels markedly reduced (no menses for over one year).

Early menopause: after surgical or chemical castration, irradiation, chemotherapy, intense stress, affective shock, pituitary adenoma, pituitary neurosurgery...

Confirmed menopause: E₂, FSH, LH

Initial Profile

Perimenopause: FSH before D5 (decrease of follicular stock).

Confirmed menopause: FSH (≤30 IU/l)

Treatment and/or Follow-up

The strong hormonal instability (both intra- and inter-individual) most often requires progesterone treatment until menstruation stops.

Substitutive hormone treatment

- Quality of life
- Prevention of heart and cardio-vascular disease
- Prevention from the risk of osteoporosis
- Evaluation of the benefits to the heart and bones versus the risk of breast cancer

Biological monitoring of substitutive hormone treatment

- If required, E₂ to adapt the posology if percutaneous substitutive hormone treatment
- FSH (<30 IU/l)
- Carbohydrate-lipid profile annually or every 2 yrs.

Essentially clinical and radiological monitoring (mammography, ultra-sound scan).
LH-RH (or GnRH) TEST

Intravenous injection at T0, of 100 µg/m² (child) or 100 µg (adult) of LH-RH

Assay of FSH or LH at T-15, T0, T20, T40, T60, T90 minutes

L-DOPA OR TRH TEST

Production of Prolactin is
- reduced by L-dopa
 Assay of PRL at T0, T15, T30, T60, T90 and T120 minutes
 maximum slowing down at T60 or T90
- stimulated by TRH
 Assay of PRL at T0, T15, T30, T60, T90 and/or T120 minutes
 increase of 200 to 300% between T15 and T60

SYNACTHEN TEST (SYNTHETIC ACTH)

Intramuscular injection of 0.25 mg of Synacthen at T0 (0.125 mg if ≤ 2 yrs old).

Assay of cortisol, 17-OH-progesterone, aldosterone, DHEAS, 4-Androstenedione at T0, T30 and/or T60 minutes.

An objective normal response is obtained if there is an increase in cortisol and aldosterone (minimum factor 2), without any significant modification of the other parameters.
BLOOD HORMONE ASSAYS:

VIDAS hCG ref. 30 405
VIDAS LH ref. 30 406
VIDAS FSH ref. 30 407
VIDAS Prolactin ref. 30 410
VIDAS Progesterone ref. 30 409
VIDAS Estradiol II ref. 30 431
VIDAS Testosterone ref. 30 418
VIDAS Cortisol ref. 30 417

VIDIA hCG* ref. 38 300
VIDIA LH* ref. 38 310
VIDIA FSH* ref. 38 320
VIDIA Prolactin* ref. 38 330
VIDIA Progesterone* ref. 38 340
VIDIA Estradiol* ref. 38 350

Availability of some VIDAS tests may be restricted in certain countries due to registration requirements. Consult our local representatives for further information.

*In development.

This booklet was created in collaboration with:

Dr. I. COLLIGNON
(Versailles Hospital Center, FRANCE)

Prof. D. PORQUET
(R. Debré University Hospital Center, Paris, FRANCE)
FERTILITY

Investigation of FEMALE REPRODUCTIVE HORMONE DYSFUNCTIONS

from diagnosis, the seeds of better health